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Abstract. A general tensorial conservation law is formulated by starting from the invari- 
ance of the gravitational Lagrangian density by Rosen. Utilising this new formula, the 
author derives some reasonable results for the mass-energy distribution which are in 
accordance with the Newtonian formulae. 

1. Formulation of the problem 

The formulation of the energy-momentum conservation law proposed by Einstein 
(1916a, b) for the gravitational theory leads to results for the total energy of the 
closed system which are physically unacceptable, unless quasi-Galilean systems are 
employed. The coordinate-dependent consequence of this conservation law led to 
some early controversy in the literature. Nevertheless the energy-momentum law 
originally formulated by Einstein was generally accepted. 

The purpose of this paper is to propose another expression of the conservation 
law by starting from the invariance of the gravitational Lagrangian density by Rosen 
(1940, 1963), which is invariant with respect to the arbitrary space-time transforma- 
tions. We shall investigate some particular applications of this new scheme in $0 3,4 .  

2. The derivation of the general tensorial conservation 

Following Rosen (1940, 1963), the Lagrangian density of the gravitational field is of 
the form 

where r:, denotes Christoffel symbols of the actual Riemann space-time, and FLp 
denotes Christoff el symbols of the background space-time. 

Since the Lagrangian density is a scalar density, we have 
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under the infinitestimal transformations of 

(2.51 

( 2 . 5 ~ )  

(2.5b) 

Since (a/axp)(d/ax”)(t”fl: 1 = 0 (see Belinfante 1955, Belinfante and Carrison 
1962), we obtain from (2.5)-(2.6) 

(the differential conservation law) with 

where 7,  and V, denote the convariant derivatives based on Christoffel symbols of 
grv and g,,, respectively. 

By applying the Gauss-Stokes theorem to a region U on a hypersurface X, from 
(2.6)-( 2.71, we get 

(the integral conservation law). This expression is invariant with respect to arbitrary 
space-time transformations. 
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3. ‘Translation-rotation’ group in the generalised harmonic frame of reference 

In order to derive the actual conservation laws of the four-momentum and the 
four-angular momentum from the general expressions (2.6)-(2.9), let us consider the 
‘translation-rotation’ group. 

Theorem. The infinitesimal ‘translation-rotation’ group is uniquely defined by 

t r n ,  = g p A C i n J A ,  

t i n ) &  = g,At:n) = g + 4 g A p c i n l p ,  

n = l , 2 , 3  , . . . ,  10, 

(3.1) 

v & c [ n J A  + J &  = O ,  

in the generalised harmonic frames of references, in which the Rosen-Fock conditions 
(Rosen 1940, 1963) d,J-g g,” = 0 are satisfied. 

Proof. Let (x, y, z ,  t )  and (’x, ’y, ’ z ,  ’ t )  denote harmonically rectangular coordinates and 
’ x u  = x p  + E i n , t y n J ;  then we have (Belinfante 1955, Belinfante and Carrison 1982) 

& ( n ) C $ r n )  = cp + W y X A  = v@”C, + ?)pyW,AxA\,  

C, = constant, W ” A  = - W A ”  = constant, 

i‘-1 0 0 o\ 

\ o  0 0 1’ 
i.e. 

(3.3) 

From the theorem above, the conservation laws of four-moentum and four-angular 
momentum are of the forms 

a,o,Y,, = 0, 

0 Yn I = T p  ( ( 1 / J3)t rn I fi 7 9 (3.5) 
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4. The energy of the spherical bodies 

In  the harmonically spherical coordinate frame, we have 

(4.1) I - ( r  + m ) / ( r  - m ) 0 0 0 
0 -(r+m)’ 0 0 
0 0 - ( r  + m 1’ sin2 e 0 
0 0 0 ( r  - m ) / ( r  + m 1 

g,” = 

and the corresponding flat metric is 

-1 0 0 0 
0 -i; - r z t n 2 8  

Inserting (4.1)-(4.2) into the flat Killing equation (3.1), we get 

G O ) ,  = ( O , O , O ,  1) 

go) = g@*C(o)* = ( O , O ,  0, 1) 

o;b, =V,((l/J-g)t&,fiT:”) = V , ( ( l / J q ) f i ; P )  

(‘time-translation’) 

and inserting (4.3) into (3.5) and (2.8), we obtain 

(4.2) 

(4.3) 

= ( l / J - g ) ( d / d x ” )  fi;p (four-flux of the energy), (4.4) 

E, = f 5f0)fi;;P dSvp 
r , f = c  

= f,,=, fi? de d4 (energy contained in a sphere). (4.5) 

Furthermore, inserting (4.1)-(4.2) into (2.8), we get 

fi;’ = (4a)-’(m - m2/2r)  sin e, 
f i ; p  = O  (P + 11, f i p o  ( K  = 1,2 ,  3). (4.7) 

(4.6) 

Thus, from (4.4)-(4.7), we have 

@yo, (energy density) = m2/87rr4 > 0, 

@E (flux of energy) = 0, 

E, = m  - m 2 / 2 r ,  

(4.8) 

E, = lim E, = m/2, (4.9) 
r-m 

E (total energy) = lim E, = m. 
r+m 

From (4.9) we see that: 
(a) The energy density is positive definite. 
(b) The gravitational ‘self-energy’ is E, = -m2/2r which is in accordance with the 

‘Newtonian formula’. 
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(c) The energy-mass relation obtained is in accordance with the empirical formula 
(cf table 1). 

Table 1. The comparison of the present scheme with others. 

Energy computed from the harmonically 
Author spherical coordinates frame 

Einstein (1916a, b) 
Landau and Lifshitz (19511 
Infeld (1960) E , = ( ( ~ + m i / ( r - m ) ) ~ ( m - $ r ) , E , = q E  =--CO 

Moller (1959) 
Cornish (1965, E , = ( m - m 2 / 2 r ) [ ( r + m ) / ( r - m ) ] ( l + m / r ) 2 , E ,  = C O ,  

Author of this paper 
Empirical formula 

E, = m - r ,  E,  = 0, E,= - r ,  E = -cc 
E, = -' 4 r ( r  +m)3, E,  = -2rrm3, E = --CO 

E, = E R  = E  = m, E,= 0 

E = m  
E, = m - m2/2r, E,  = tm, E,  = -m2/2r, E = m 
E,  #a, E,# 0, a, E = m 
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